目的 研究花锚NFDE8酮类化合物1-羟基-2, 3, 5-三甲氧基NFDE8酮(HM-1)在大鼠肝脏微粒体中的代谢转化,并鉴定参与1-羟基-2, 3, 5-三甲氧基代谢的CYP450酶亚型。方法 采用大鼠肝脏微粒体温孵体系,结合高效液相-离子阱-飞行时间质谱技术(LC/MSn-IT-TOF),确定1-羟基-2, 3, 5-三甲氧基NFDE8酮在大鼠肝脏微粒中的代谢途径,并通过加入特异性化学抑制剂,鉴定参与1-羟基-2, 3, 5-三甲氧基NFDE8酮在大鼠肝脏微粒体中代谢的主要CYP450酶亚型。结果 在大鼠肝微粒体中主要检测到6个代谢产物,通过对未知代谢产物进行结构解析,表明1-羟基-2, 3, 5-三甲氧基NFDE8酮的I相代谢反应主要是去甲基化或/和羟化反应;CYP1A2、CYP2C6/11、CYP2D2、CYP2E1、CYP3A2均参与了1-羟基-2, 3, 5-三甲氧基NFDE8酮在大鼠肝脏微粒体中的代谢,其中CYP2C6/11与CYP3A2的参与程度较高。结论 进一步完善了1-羟基-2, 3, 5-三甲氧基NFDE8酮在大鼠微粒体中的代谢途径,鉴别了参与1-羟基-2, 3, 5-三甲氧基NFDE8酮在大鼠中代谢的CYP450酶亚型,这将为1-羟基-2, 3, 5-三甲氧基NFDE8酮的药物药物相互作用研究提供参考,也为花锚的临床合理用药提供指导。
Abstract
OBJECTIVE To study the biotransformation of bioactive xanthones 1- hydroxyl- 2, 3, 5- trimethoxyxanthone(HM-1) from Halenia elliptica, D. Don and five mostly common CYP450 isoforms involved of the its metabolism in rat liver microsomes (RLMs). METHODS Using RLMs, combining high performance liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LC/MSn-IT-TOF), the metabolic pathway of HM-1 was profiled. CYP1A2, CYP2C6/11, CYP2D2, CYP2E1, CYP3A2 were studied to identify the involved isoforms by using specific chemical inhibitor of each isoform. RESULTS Six phase Ⅰ metabolites were detected and identified in the metabolism of HM-1 in RLMs. Demethylation or/ and hydroxylation were the major phase Ⅰ metabolic reactions. By using specific chemical inhibitors with three different concentrations, CYP1A2, CYP2C6/11, CYP2D2, CYP2E1, CYP3A2 were all found to be involved in the metabolism of HM-1. By contrast, CYP2C6/11 and CYP3A2 were the most involved isoforms. CONCULSION The metabolic profile of HM-1 is further improved, and CYP450 isomers involved in metablosm of HM-1 in RLMs is identified. This will provide a scientific reference for the drug-drug interaction of HM-1 and an instruction for the clinical use of Halenia elliptica, D. Don.
关键词
1-羟基-2 /
3 /
5-三甲氧基NFDE8酮 /
CYP450 /
高效液相-离子阱-飞行时间质谱 /
特异性化学抑制剂 /
代谢转化
{{custom_keyword}} /
Key words
1- hydroxyl- 2, 3, 5- trimethoxyxanthone /
xanthone /
CYP450 /
LC/MSn-IT-TOF /
specific chemical inhibitor /
metabolic transformation
{{custom_keyword}} /
中图分类号:
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LUO D S(Ed.). Chinese Materia Medica of Tibetan Medicine (中华藏本草) [M]. Beijing: Minzu Press, 1997: 187-188.[2] DHASMANA H, GRAG H S. Two xanthone glucosides from Halenia ellepitica D. Don [J ].Phytochem,1989,28(10):2819-2821.[3] GAO J, WANG S J, FANG F, et al. Xanthones from Tibetan medicine Halenia elliptica and their antioxidant activity[J]. Acta Acad Med Sin(中国医学科学院学报), 2004, 26(4):364-367.[4] WANG Y, SHI J G, WANG M Z, et al. Mechanisms of the vasorelaxant effect of 1-hydroxy-2, 3, 5-trimethoxy-xanthone, isolated from a Tibetan herb, Halenia elliptica, on rat coronary artery[J]. Life Sci, 2007, 81(12): 1016-1023.[5] WANG Y, SHI J G, WANG M Z, et al. Mechanisms of the vasorelaxant effect of 1, 5-dihydroxy-2, 3-dimethoxy-xanthone, an active metabolite of 1-hydroxy-2, 3, 5-trimethoxy-xanthone isolated from a Tibetan herb, Haleni[a elliptica, on rat coronary artery[J]. Life Sci, 2008, 82(1-2): 91-98.[6] WANG Y, SHI J G, WANG M Z, et al. Vasodilatory actions of xanthones isolated from a Tibetan herb, Halenia elliptica[J]. Phytomed, 2009, 16(12): 1144-1150.[7] FENG R, SHI J G, LIU X W, et al. Identification of the metabolites of biologically active xanthones isolated from Halenia elliptica D. Don by high performance liquid chromatography coupled to ion trap time-of-flight mass spectrometry[J]. Chin Chem Lett(中国化学快报), 2011, 22(7): 839-842. [8] FENG R, ZHANG Y Y, CHEN X, et al. In vitro study on metabolite profiles of bioactive xanthones isolated from Halenia elliptica D. Don by high performance liquid chromatography coupled to ion trap time-of-flight mass spectrometry[J]. J Pharm Biomed Anal, 2012, 62: 228-234.[9] PATSALOS P N, PERUCCA E. Clinically important drug interactions in epilepsy: Interactions between antiepileptic drugs and other drugs[J]. Lancet Neuro, 2003, 2(8): 473-481.[10] SAITO M, HIRATA-KOIZUMI M, URANO T, et al. Undesirable effects of citrus juice on the pharmacokinetics of drugs: Focus on recent studies[J]. J Clin Pharm Ther, 2005, 30(8):21-37.[11] SPROULE B A, NARANJO C A, BREMNER K E, et al. Selective serotonin reuptake inhibitors and CNS drug interactions[J]. Clin Pharmacokinet, 1997, 33(6): 454-471.[12] WIENKERS L C, HEATH T G. Predicting in vivo drug interactions from in vitro drug discovery data[J]. Nat Rev Drug Discov, 2005, 4(10): 825-833.[13] SMITH P K, KROHN R I, HERMANSON G T, et al. Measurement of protein using bicinchoninic acid [J]. Anal Biochem, 1985,150(1):76-85.[14] RODEIRO I, DONATO M T, LAHOZ A, et al. Modulation of P450 enzymes by Cuban natural products rich in polyphenolic compounds in rat hepatocytes[J]. Chem Biol Interact, 2008, 172(1): 1-10.[15] SVENSSON U S H, ASHTON M. Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin[J]. Brit J Clin Pharmacol, 1999, 48(4): 528-535.[16] FENG R, ZHOU X, TAN X S, et al. In vitro identification of cytochrome P450 isoforms responsible for the metabolism of 1-hydroxyl-2, 3, 5-trimethoxy-xanthone purified from Halenia elliptica D. Don[J].Chem Biol Interact, 2013, 210: 12-19.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
“重大新药创制”科技重大专项(2012ZX09301-002-001,2012ZX09301-002-006);国家自然基金面上项目(30873115);中国医学科学院药物所基本科研业务费(2012CHX18)
{{custom_fund}}